Wednesday, November 18, 2009

Kirchhoff's circuit laws

Kirchhoff's circuit laws are two equalities that deal with the conservation of charge and energy in electrical circuits, and were first described in 1845 by Gustav Kirchhoff. Widely used in electrical engineering, they are also called Kirchhoff's rules or simply Kirchhoff's laws (see also Kirchhoff's laws for other meanings of that term).

Both circuit rules can be directly derived from Maxwell's equations, but Kirchhoff preceded Maxwell and instead generalized work by Georg Ohm.



Kirchhoff's voltage law (KVL) The sum of all the voltages around the loop is equal to zero. v1 + v2 + v3 + v4 = 0This law is also called Kirchhoff's second law, Kirchhoff's loop (or mesh) rule, and Kirchhoff's second rule.

The directed sum of the electrical potential differences around any closed circuit must be zero.
Similarly to KCL, it can be stated as:


Here, n is the total number of voltages measured. The voltages may also be complex:


This law is based on the conservation of energy whereby voltage is defined as the energy per unit charge. The total amount of energy gained per unit charge must equal the amount of energy lost per unit charge. This seems to be true as the conservation of energy states that energy cannot be created or destroyed; it can only be transformed from one form to another.

Electric field and electric potential
Kirchhoff's voltage law as stated above is equivalent to the statement that a single-valued electric potential can be assigned to each point in the circuit (in the same way that any conservative vector field can be represented as the gradient of a scalar potential). Then the sum of the changes in this potential that occur as one makes an imaginary traverse around any closed loop in the circuit should be equal to zero.

This could be viewed as a consequence of the principle of conservation of energy. Otherwise, it would be possible to build a perpetual motion machine that passed a current in a circle around the circuit.

Considering that electric potential is defined as a line integral over an electric field, Kirchhoff's voltage law can be expressed equivalently as


which states that the line integral of the electric field around closed loop C is zero.

In order to return to the more special form, this integral can be "cut in pieces" in order to get the voltage at specific components.

This is a simplification of Faraday's law of induction for the special case where there is no fluctuating magnetic field linking the closed loop. Therefore, it practically suffices for explaining circuits containing only resistors and capacitors.

In the presence of a changing magnetic field the electric field is not conservative and it cannot therefore define a pure scalar potential—the line integral of the electric field around the circuit is not zero. This is because energy is being transferred from the magnetic field to the current (or vice versa). In order to "fix" Kirchhoff's voltage law for circuits containing inductors, an effective potential drop, or electromotive force (emf), is associated with each inductance of the circuit, exactly equal to the amount by which the line integral of the electric field is not zero by Faraday's law of induction.

No comments:

Post a Comment